文献知网节
  • 记笔记

遗传算法优化BP神经网络的岩质边坡稳定性预测

黎玺克

甘肃铁道综合工程勘察院有限公司

摘要:为了解决边坡工程中非线性变化给稳定性预测造成的困难,建立了GA-BP神经网络计算模型预测岩质边坡稳定性。采用定性评价和相互作用矩阵复核的方式,选取边坡坡度、边坡高度、斜坡结构类型、岩体强度、控滑结构面倾角、岩体结构特征、地表变形强度、人类活动强度8个评价因子作为BP神经网络的输入变量;利用遗传算法对神经网络的初始权值和阈值进行优化后训练岩质边坡稳定性预测模型;对比分析GA-BP神经网络和BP神经网络的预测效果。结果表明,优化后的预测结果误差绝对值小于0.15的占85%,未优化的传统神经网络仅占45%,优化后的预测结果更加接近真实值,表明遗传算法对传统BP神经网络的优化是有效的。研究结果对建立岩质边坡稳定性预测模型具有一定的参考价值。
  • 专辑:

    理工A(数学物理力学天地生); 理工C(机电航空交通水利建筑能源)

  • 专题:

    地质学; 建筑科学与工程

  • 分类号:

    TU457

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:298 页码:164-169 页数:6 大小:472K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频