文献知网节
  • 记笔记
摘要:针对经典模糊C均值聚类(FCM)对数据进行等权划分而造成聚类结果不理想的情况,首先,采用点密度加权方式,对变压器油中溶解气体分析(DGA)数据进行处理,提高样本可分性,削弱聚类时出现的等趋势划分对聚类中心以及分类结果造成的影响。然后,以DGA故障数据聚类中心作为变压器标准故障谱。最后,利用施加惯性系数的主成分分析方法对待测样本进行故障识别。研究结果表明:通过点密度加权的FCM对DGA数据进行故障类型分类时,平均准确率比传统FCM算法提升了9.6%。利用上述方法对多组油浸式变压器进行识别,识别结果与实测信息均一致。
  • DOI:

    10.15926/j.cnki.issn1672-6871.2020.06.007

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM407

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:223 页码:39-44+50+5-6 页数:9 大小:667K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频