节点文献

基于Q学习的有限时间随机线性二次最优控制

免费订阅

【作者】 王涛罗敏娜王娜崔黎黎

【Author】 WANG Tao;LUO Minna;WANG Na;CUI Lili;Department of Computer and Mathematics Teaching, Shenyang Normal University;Software College, Shenyang Normal University;

【通讯作者】 罗敏娜;

【机构】 沈阳师范大学计算机与数学基础教学部沈阳师范大学软件学院

【摘要】 针对系统状态和控制均依赖于噪声的随机线性离散时间系统,采用基于值迭代的Q学习迭代算法求解模型参数部分未知的有限时间随机线性二次(SLQ)最优控制问题。首先给出SLQ最优控制问题可达性条件和适应性条件,并通过矩阵拉格朗日乘子算法得到最优控制增益矩阵序列以及相应的随机代数Riccati方程(SARE)。其次,以值迭代算法为基础定义Q函数,利用Q学习迭代算法获得每个最优控制增益矩阵所对应的迭代控制增益矩阵序列和H矩阵序列。该算法依赖于系统状态信息,摆脱了系统模型参数部分未知的限制,并证明控制增益矩阵序列收敛到各自的最优控制增益矩阵,H矩阵序列收敛到各自的最优H矩阵。最后通过一个仿真实例说明了Q学习迭代算法的有效性。

【基金】 国家自然科学基金青年科学基金项目(61703289);辽宁省科技厅自然科学基金资助项目(2019-ZD-0478)
【所属期刊栏目】 运筹学与控制论 (2020年03期)
  • 【分类号】O232
  • 【下载频次】73
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: