节点文献

基于隐马尔可夫模型和条件熵的异常流量检测方法研究

免费订阅

【作者】 肖林英王怀彬

【Author】 XIAO Lin-ying;WANG Huai-bin;School of Computer Science and Engineering,Tianjin University of Technology;

【通讯作者】 王怀彬;

【机构】 天津理工大学计算机科学与工程学院

【摘要】 网络发展势头迅猛,网络安全问题成为当今互联网时代的重中之重.本文提出将隐马尔可夫模型应用到流量异常检测中,用统计学的方法来对流量进行分类.从网络层面着手,将数据包中提取到的一些像IP等的属性特征经处理后输入到隐马尔可夫模型(HMM)中进行分类,最后通过模型输出概率值来判断流量的正常异常类型.在模型训练阶段,我们创造性地使用条件熵来优化Baum-Welch参数估计算法,减少了模型的训练的时间.从实验结果和分析比较来看,本文提出的检测方法在检测准确率和效率上都取得了良好的效果.

  • 【分类号】TP393.06
  • 【下载频次】86
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: