文献知网节
  • 记笔记
摘要:指静脉生物识别技术已被广泛研究用于个人认证.针对质量差的图像中的虚假和缺失功能可能会降低系统性能的问题,提出了一种多标签深度神经网络(CSA-DNN).在生物特征质量评估的主要目标(即验证错误最小化)的驱动下,假设在验证系统中错误地拒绝低质量图像,并且对低质量图像进行图像配准后转换成高质量图像进行身份识别.基于该假设,低质量图像和高质量图像被人工标记.在结构上引入通道空间注意力(CSA)模块增加特征学习能力,并将图像分成各种block,以增强网络鲁棒性.随后,估计来自测试图像的每个block的质量,再根据多标签预测的结构,采用B样条配准与融合滤波的方式将低质量图像变换为高质量图像,从而提高系统识别率与利用率,最后使用该算法在两个大型公共数据集上面测试,实验结果表明,采用该算法达到了最高准确率为92.5%,静脉身份验证最高精度为93.7%,图像最高利用率为98.5%的高效评估性能.
  • 专辑:

    理工C(机电航空交通水利建筑能源); 理工A(数学物理力学天地生); 医药卫生; 电子技术及信息科学

  • 专题:

    生物学; 生物医学工程; 计算机软件及计算机应用

  • 分类号:

    TP391.41;R318

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:5 页码:33-38 页数:6 大小:1558K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者