节点文献

基于多任务学习的口腔白斑与扁平苔藓的分割与识别

免费订阅

【作者】 管子玉谢飞任文研沈雪敏许鹏飞王和旭

【Author】 GUAN Ziyu;XIE Fei;REN Wenyan;SHEN Xuemin;XU Pengfei;WANG Hexu;School of Information Science and Technology,Northwest University;School of Computer Science,Northwestern Polytechnical University;School of Computer Science,Xianyang Normal University;Shanghai Ninth People’s Hospital,School of Medicine,Shanghai Jiao Tong University;Xijing University;

【通讯作者】 任文研;

【机构】 西北大学信息科学与技术学院西北工业大学计算机学院咸阳师范学院计算机学院上海交通大学医学院附属第九人民医院西京学院

【摘要】 口腔白斑属于癌前病变或潜在的恶性疾患范畴,诊断意义尤为重要;口腔扁平苔藓是一种常见的口腔黏膜慢性炎性疾病。两种疾病的症状相似度高导致利用传统目标识别算法难以准确识别。为此,该文提出了一种基于多任务学习卷积神经网络的口腔斑纹类疾病的目标检测、分割与识别算法。该算法通过改进的Mask R-CNN网络提取口腔斑纹类疾病图像的高维特征,以检测出相关病变的具体位置和精准区域,并识别出病损的种类。算法的改进之处在于图像检测与识别的分支网络利用分割子网络的高维特征以关注病变区域的特征,提高了口腔白斑与扁平苔藓识别的准确性。实验表明,该文所提方法相对于现有传统识别方法和常见多任务学习方法具有更高的准确性和敏感性。

【基金】 国家自然科学基金资助项目(61876145,61973249,61973250);陕西省教育厅服务地方科学研究计划资助项目(19JC041,19JC038)
【所属期刊栏目】 高专论谈 (2020年01期)
  • 【DOI】10.16152/j.cnki.xdxbzr.2020-01-001
  • 【分类号】TP391.41;TP183;R781.5
  • 【下载频次】69
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: