文献知网节
  • 记笔记

基于卷积神经网络的管道表面缺陷识别研究

袁泽辉郭慧周邵萍

华东理工大学机械与动力工程学院

摘要:针对传统管道表面缺陷检测方法存在效率低、准确率不高的问题,提出一种通过机器视觉检测管道表面缺陷的方法,在采集管道表面缺陷的图像信息后通过卷积神经网络的算法分类不同的缺陷。通过加入批量归一化层,改进低层和中层卷积核的构造,优化了GoogleNet的构造,提高了卷积神经网络的泛化性和收敛性。试验结果表明,应用卷积神经网络后对管道表面缺陷的识别率较高,显著提高了管道表面缺陷识别的效率和准确率,具有较好的工程意义。
  • DOI:

    10.16652/j.issn.1004-373x.2020.17.011

  • 专辑:

    电子技术及信息科学

  • 专题:

    计算机软件及计算机应用; 自动化技术

  • 分类号:

    TP183;TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:93 页码:47-51 页数:5 大小:2067K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者