文献知网节
  • 记笔记
摘要:研究大型数据库重复记录检测与优化,利用Jaro算法以及TF-IDF算法计算大型数据库不同记录字段相似度量函数,所获取字段相似度量函数作为记录特征向量,经过人工标记后设置为BP神经网络期望输出。构建BP神经网络学习样本,设置变参数量子粒子群初始连接权值与阈值作为粒子,利用BP神经网络依据学习训练样本获取量子粒子群适应度函数值,确定粒子此刻最优位置以及全局最优位置。将全局最优位置粒子设置为BP神经网络初始连接阈值以及权值,重复更新粒子位置,利用所获取训练集学习结果建立大型数据库重复记录检测模型,检测模型输出结果大于检测门限值时,该记录为大型数据库内重复记录,否则为非重复记录。实验结果表明,采用该方法检测包含100 000条记录的大型数据库,检测召回率以及准确率均高于98.5%。
  • DOI:

    10.16652/j.issn.1004-373x.2020.17.018

  • 专辑:

    电子技术及信息科学

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP311.13

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:15 页码:77-81 页数:5 大小:1621K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者