文献知网节
  • 记笔记

基于数据挖掘算法的高校教学质量评估模型设计

李育阳

南京工程学院

摘要:高校教学质量是一项重要的高校水平评价指标,但是高校教学质量与多种影响因素相关,变化规律十分复杂,使得当前模型无法准确对高校教学质量进行评估。为了解决当前高校教学质量评估过程中存在的不足,以提高高校教学质量评估正确率,设计了基于数据挖掘算法的高校教学质量评估模型。该模型首先对当前高校教学质量评估的相关文献进行研究和分析,建立高校教学质量评估的影响因素;然后,采集高校教学质量影响因素数据,并通过专家确定高校教学质量等级,建立高校教学质量评估的学习样本;最后,引入数据挖掘技术的BP神经网络对学习样本进行训练,形成高校教学质量评估模型,并通过具体实例分析高校教学质量模型的优越性。结果表明,数据挖掘算法可以描述高校教学质量等级之间的差别,获得高精度的高校教学质量评估结果,而且高校教学质量评估误差要远小于当前典型的高校教学质量评估方法,优越性十分显著。
  • DOI:

    10.16652/j.issn.1004-373x.2020.17.027

  • 专辑:

    电子技术及信息科学; 教育与社会科学综合

  • 专题:

    高等教育; 计算机软件及计算机应用

  • 分类号:

    G642;TP311.13

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:96 页码:119-122 页数:4 大小:1547K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者