文献知网节
  • 记笔记

基于大数据挖掘技术的文本分类研究

孟鑫淼

新华三大数据研究院

摘要:文本数据具有规模大、特征维数高等特点,当前文本分类方法无法刻画文本变化特点,使得文本分类正确率低、误差大、分类时间长,为了获得理想的文本分类效果,设计基于大数据挖掘技术的文本分类方法。首先对当前文本分类的研究进展进行分析,找出导致当前文本分类效果差的原因;然后,提取文本分类原始特征,并引入核主成分分析算法对原始特征进行处理,降低特征维数,简化文本分类器的结构;最后,采用大数据挖掘技术构建文本分类器,并与其他文本分类方法进行对比测试。测试结果表明,所提方法可以更好地描述文本变化特点,能够对各种类型文本进行准确识别和分类,文本分类精度超过95%,明显高于当前其他文本分类方法,并且所提方法的文本分类时间显著减少,具有更好的文本分类效果。
  • DOI:

    10.16652/j.issn.1004-373x.2020.17.029

  • 专辑:

    电子技术及信息科学

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP311.13;TP391.1

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:121 页码:126-129 页数:4 大小:1650K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者