节点文献

圈的笛卡积的圈点连通度(英文)

免费订阅

【作者】 秦德金田应智孟吉翔

【Author】 QIN Dejin;TIAN Yingzhi;MENG Jixiang;College of Mathematics and System Sciences,Xinjiang University;

【机构】 新疆大学数学与系统科学学院

【摘要】 设G是一个点集为V(G),边集为E(G)的图.对于图G的点子集S,如果G-S不连通并且至少两个连通分支包含圈,则称S为一个圈点割.如果一个图有圈点割,称该图为圈可分离的.一个圈点可分离图G的最小圈点割的阶数被称为圈点连通度,记作κc(G).文章证明了κc(C3□Cn1□Cn2□···□Cnk)=6k和κc(Cn1□Cn2□···Cnk)=8k-8,其中对于i=1,2,···,k,Cni是一个长度大于等于4的圈.

【关键词】 圈点割圈点连通度笛卡尔积
【基金】 supported by NSFC(11531011,11401510);the Key Laboratory Project of Xinjiang(2015KL019)
【所属期刊栏目】 数理科学 (2017年04期)
  • 【DOI】10.13568/j.cnki.651094.2017.04.007
  • 【分类号】O157.5
  • 【被引频次】1
  • 【下载频次】37
节点文献中: 

本文链接的文献网络图示:

浏览历史:
下载历史: