文献知网节
  • 记笔记
摘要:服务型机器人在抓取任务中面临的是非结构化的场景。由于物体放置方式的不固定以及其形状的不规则,难以准确计算出机器人的抓取姿态。针对此问题,提出一种双网络架构的机器人最优抓取姿态检测算法。首先,改进了YOLO V3目标检测模型,提升了模型的检测速度与小目标物体的识别性能;其次,利用卷积神经网络设计了多目标抓取检测网络,生成图像中目标物体的抓取区域。为了计算机器人的最优抓取姿态,建立了IOU区域评估算法,筛选出目标物体的最优抓取区域。实验结果表明,改进后的YOLO V3目标检测精度达到91%,多目标抓取检测精度达到86%,机器人最优抓取姿态检测精度达到90%以上。综上所述,所提方法能够高效、精确地计算出目标物体的最优抓取区域,满足抓取任务的要求。
  • DOI:

    10.19650/j.cnki.cjsi.J2006162

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    自动化技术

  • 分类号:

    TP242;TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:363 页码:108-117 页数:10 大小:7442K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者