文献知网节
  • 记笔记
摘要:为实现风电机组发电机前轴承故障预警及辨识,将监控和数据采集系统(SCADA)时间序列数据和状态监测系统振动数据相结合,提出了一种时频域建模方法。首先,利用SCADA数据建立基于门控循环单元神经网络的发电机前轴承温度模型,并计算其温度残差特征;其次,提取发电机前轴承振动信号时域特征和频域特征;最后,将温度残差特征和振动信号时频域特征相融合,建立基于极限梯度提升的前轴承故障辨识模型,从而辨识发电机前轴承正常、内圈损伤、外圈损伤、轴不平衡、滚动体损伤5类情况。实验研究表明,该方法比单独利用振动信号特征开展前轴承故障预警辨识的准确率高,其正常、内圈损伤、外圈损伤的平均辨识准确率从87%、58.5%、65%,分别提升到88.5%、67.5%和74%。
  • DOI:

    10.19650/j.cnki.cjsi.J2006136

  • 专辑:

    理工C(机电航空交通水利建筑能源)

  • 专题:

    电力工业

  • 分类号:

    TM315

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:278 页码:242-251 页数:10 大小:4481K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者