文献知网节
  • 记笔记
摘要:针对梅花图像,提出了适合其颜色、形状、纹理3方面特征的描述方法。在颜色特征提取方面,通过直方图归类的结果,提出了适合描述梅花图像色彩特征的方法。改进了对形状特征进行描述的平坦度算法,在计算平坦度时只计算花朵区域,没有统计背景区域,使算法得到简化,并且不影响最终的效果。改进了灰度共生矩阵的计算方法,首先提取出花朵区域的最小外接长方形,以此作为新的图像的长和宽,降低灰度共生矩阵的计算量;然后再计算4个角度的灰度共生矩阵,累加相应的矩阵元素除以4求出4个矩阵的平均矩阵,作为参与运算的灰度共生矩阵;计算该矩阵的相关参数作为纹理特征的描述。最后对提取到的19个特征采用SVM分类器进行分类和识别。对660幅梅花图像(每个品种60幅,11个品种)进行测试,330幅作为训练样本,另外330幅作为测试样本。实验结果表明,在对SVM分类器做交叉验证后,识别率可达到93.94%。该识别系统具有较高的识别准确率和稳定性,能够起到知识普及的作用,减轻专业人员的负担,增加梅花的鉴赏性。
  • DOI:

    10.13332/j.1000-1522.2012.01.009

  • 专辑:

    农业; 电子技术及信息科学

  • 专题:

    计算机软件及计算机应用

  • 分类号:

    TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:342 页码:96-104 页数:9 大小:627K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频