文献知网节
  • 记笔记
摘要:矿产靶区预测是一种从统计单元集合中识别找矿靶区的非线性模式识别过程,可以利用Boltzmann机能够对外部刺激进行编码和重建的功能,实现基于Boltzmann机的矿产靶区非线性统计预测过程.鉴于此,笔者定义了面向矿产靶区预测的三层Boltzmann机模型,模型输入层神经元数目等于找矿证据数目,输出层只有一个神经元,隐藏层神经元数目由用户根据矿产靶区预测的精度要求确定;模型应用Hebbian编码和模拟退火算法相结合的随机学习算法进行训练,根据学习训练后模型输入层与隐藏层神经元之间的连接权确定找矿证据的权系数;根据证据权系数和统计单元证据组合特征计算单元成矿有利度,圈定找矿靶区.在GDAL数字图像输入输出函数库基础上,用VC++语言开发了面向栅格数据的矿产靶区预测Boltzmann机算法程序并应用于新疆阿勒泰地区的矿产靶区预测研究.结果表明,Boltzmann机模型预测的统计单元成矿有利度能够正确反映研究区已知矿床(点)的空间分布规律,因此,基于Boltzmann机的矿产靶区非线性统计预测模型是有效的.
  • 专辑:

    理工A(数学物理力学天地生); 理工B(化学化工冶金环境矿业)

  • 专题:

    地质学; 矿业工程

  • 分类号:

    P612

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:181 页码:179-185 页数:7 大小:454K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频