文献知网节
  • 记笔记
摘要:针对高效全局优化(Efficient Global Optimization,简称EGO)方法的训练问题,选择元启发式(Meta-heuristic)算法、随机取样算法以及低频序列算法,并选用三个无约束、两个带约束解析优化算例以及两个气动优化算例,对这三类训练算法进行详细地比较研究,发现在元启发式算法中差分进化算法最具应用潜力,而低频序列算法可以有效降低EGO方法的随机性,其中Faure序列平均性能最优.
  • DOI:

    10.19596/j.cnki.1001-246x.2012.03.002

  • 专辑:

    理工A(数学物理力学天地生); 电子技术及信息科学

  • 专题:

    力学; 计算机软件及计算机应用

  • 分类号:

    O35;TP301.6

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:188 页码:326-332 页数:7 大小:640K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频