文献知网节
  • 记笔记
摘要:通过对支持向量数据描述SVDD(Support Vector Data Description)算法的阐述和SVDD算法在增量学习过程中支持向量集变化特性的分析,提出一种新的SVDD增量学习算法。以Spambase邮件语料库作为实验数据源,将其与非增量学习算法以及一般传统增量学习算法进行比较,结果证明,该算法在保证垃圾邮件识别精度的同时又大大缩短了训练时间。
  • 专辑:

    电子技术及信息科学

  • 专题:

    自动化技术

  • 分类号:

    TP181

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:206 页码:237-239 页数:3 大小:451K

相关文献推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者