文献知网节
  • 记笔记

基于AR模型的动态模糊聚类算法

刘宇宏王士同徐红林

  江南大学信息工程学院    江南大学信息工程学院 江苏无锡214122  

摘要:与传统的硬划分聚类相比,模糊聚类算法(以FCM为例)对数据的比例变化具有鲁棒性,能够更准确地反映数据点与类中心的实际关系,目前已得到广泛应用。然而对于时序基因表达数据来说,传统的聚类算法往往不能充分利用到数据中时间上的动态关联信息。因此可以在模糊聚类算法的基础上引入自回归(AR)模型,将时序基因表达数据作为一组时间序列进行动态的聚类分析。这样不仅可以充分利用到时序基因表达数据的内部自相关性,并且可以进一步利用隶属度函数对AR模型的预测过程进行模糊化调整,从而得到更为理想的聚类结果。
  • DOI:

    10.16208/j.issn1000-7024.2008.01.067

  • 专辑:

    信息科技

  • 专题:

    自动化技术

  • 分类号:

    TP18

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:289 页码:144-147+159 页数:5 大小:486K

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频