文献知网节
  • 记笔记
摘要:神经网络是风电功率预测系统中应用最广泛的方法,而其训练算法是影响预测精度的重要因素之一。探讨了采用聚类法和正交最小二乘算法两种训练方法。以中国北方某风电场的实际数据以及数值天气预报数据为依据,对RBF聚类法和正交最小二乘算法进行了验证,最终研究并比较RBF不同预测情况与BP的差异。结果表明:对于提前24h的风电功率预测,RBF神经网络模型预测精度要好于BP神经网络模型,尤其以正交最小二乘算法为训练方法建立的RBF模型,预测精度较高,能够很好拟合实际功率曲线。
  • DOI:

    10.19725/j.cnki.1007-2322.2011.02.010

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    自动化技术

  • 分类号:

    TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:462 页码:49-52 页数:4 大小:151K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频