文献知网节
  • 记笔记
摘要:基于过程神经网络(procedure neural network,PNN)建立了具有高精确度的多步预测模型。针对PNN训练过程复杂的特点,提出了一种基于正交基函数展开和矢量矩免疫算法(vector distance based i mmunealgorithm,VD-IA)相结合的PNN训练方法。根据PNN在三角函数正交基展开形式下的数学模型,推导出适用于VD-IA的优化问题模型,采用一种自适应策略加快了VD-IA的收敛速度。基于Mackey-Glass混沌序列检验了该方法的有效性,将该方法与BP训练方法、改进粒子群优化(i mproved particle swarmopti mization,IPSO)算法进行了对比分析。仿真结果表明,基于VD-IA的PNN训练方法可以获得较优的结果,且获得泛化性能较好的PNN模型。
  • 专辑:

    电子技术及信息科学

  • 专题:

    自动化技术

  • 分类号:

    TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:186 页码:2136-2140 页数:5 大小:211K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频