文献知网节
  • 记笔记

基于扩展卡尔曼滤波的回声状态网络在线训练算法

王建民彭宇彭喜元王红

哈尔滨工业大学自动化测试与控制研究所

摘要:针对在线应用中回声状态网络(echo state network,ESN)的储备池适应性和训练算法效率问题,文中提出一种基于扩展卡尔曼滤波(extended kalman filter,EKF)的ESN在线训练算法。该算法以ESN的储备池参数以及输出连接权矩阵为目标参数,利用EKF对其进行联合训练提高储备池适应性,并能够有效地克服交叉验证参数选择导致的ESN训练效率下降问题。Lorenz混沌时间序列以及移动通信话务量时间序列预测实验证明,新方法可显著提升ESN算法的总体计算效率。
  • DOI:

    10.19650/j.cnki.cjsi.2011.07.011

  • 专辑:

    工程科技Ⅱ辑; 信息科技

  • 专题:

    自动化技术

  • 分类号:

    TP183

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:358 页码:1514-1520 页数:7 大小:587K

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频