文献知网节
  • 记笔记

基于半监督机器学习法的光伏阵列故障诊断

李光辉段晨东武珊

长安大学电子与控制工程学院

摘要:由于光伏组件的非线性输出特性,传统故障保护装置难以检测到所有故障,从而导致光伏阵列出现安全问题和火灾危险。针对传统故障保护装置存在的缺陷问题,提出一种基于半监督机器学习(semi-supervised machine learning,SSML)算法的光伏阵列故障诊断模型,模型利用参考光伏组件将光伏阵列电压与电流归一化,通过半监督机器学习算法分析光伏阵列工作点状态,进而检测故障和识别故障类型。该故障诊断模型仅需要少量容易测量的标签数据,且对环境变化有较强适应能力。最后,通过仿真和实验,验证该故障诊断模型的有效性。
  • DOI:

    10.13335/j.1000-3673.pst.2019.0695

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    电力工业; 自动化技术

  • 分类号:

    TM615;TP181

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:436 页码:1908-1913 页数:6 大小:1466K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频