文献知网节
  • 记笔记
摘要:电力物联网承载的电气量测数据在采集、传输、转换等各个环节中受到干扰而导致数据出现缺失,影响状态估计精度和系统稳定运行。针对传统修复策略仅考虑一维量测数据横向分布规律造成数据修复精度较低的不足之处,充分考虑电力系统量测数据缺失点的邻域数据以及量测数据的周期性变化规律,提出一种基于模糊自组织(fuzzy self organizing map,FSOM)神经网络的电能质量量测缺失数据修复方法。首先,通过将电能质量一维测量数据映射为二维灰度图像,提升数据间的时-空相关性解析。进而采用人工智能FSOM神经网络算法对原始数据进行聚类,析构出数据的多层特征值,进行对聚类后数据的分层修复。最后,以劳伦斯伯克利国家实验室实测电能质量数据为基础实验验证FSOM算法性能。实验结果表明,无论是在随机缺失还是连续缺失情况下,提出的FSOM修复算法比现有算法在数据低丢失率和高丢失率下都有更低的修复误差和更高的信噪比。
  • DOI:

    10.13335/j.1000-3673.pst.2019.1805

  • 专辑:

    理工C(机电航空交通水利建筑能源); 电子技术及信息科学

  • 专题:

    电力工业; 自动化技术

  • 分类号:

    TP183;TM711

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:246 页码:1941-1949 页数:9 大小:1988K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频