文献知网节
矿山测量. 2016年06期 第40-43+47页
  • 记笔记
摘要:利用灰色GM(1,1)模型得出的高速公路工后运营期路基沉降预测量呈快速增长趋势,这与后期沉降趋缓的实际情况不相符。针对这个问题,提出先用弱化缓冲算子对原始监测数据进行弱化处理,再利用弱化缓冲序列建立灰色GM(1,1)模型,提高了模型的预测精度。采用BP网络对沉降预测值修正,使修正后的预测值更加接近实际值。工程实例表明在弱化监测数据的基础上建立的灰色与人工神经网络结合模型具有很高的预测精度,可用以公路路基沉降预测分析。
  • 专辑:

    理工B(化学化工冶金环境矿业)

  • 专题:

    矿业工程

  • 分类号:

    TD327

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:80 页码:40-43+47 页数:5 大小:113K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频