文献知网节

融合颜色和深度信息的运动目标提取方法

胡涛朱欣焰呙维张发明

  武汉大学测绘遥感信息工程国家重点实验室    地球空间信息技术协同创新中心    武汉大学资源与环境科学学院    肯特州立大学信息科学学院  

摘要:行人检测是计算机视觉、智能交通等领域研究的热点与难点,基于深度传感器对室内复杂场景下的行人检测展开研究。目前,基于颜色与深度数据的目标检测方法主要包括基于背景学习的方法和基于特征检测算子的方法,前者依赖于视频序列头几十帧的背景知识,帧的数量决定检测质量;后者存在计算量大的问题,训练样本的不足也会影响行人检测结果。因此,深入分析了复杂场景特征,融合颜色和深度信息,提出了RGBD+ViBe(visual background extractor)背景剔除方法,实现前景运动目标的准确提取。实验结果表明,提出的RGBD+ViBe方法在前景运动目标检测准确率方面要明显高于仅考虑颜色或深度信息方法以及RGBD+MoG(model of Gaussian)方法。
  • DOI:

    10.13203/j.whugis20160535

  • 专辑:

  • 专题:

  • 分类号:

    TP391.41

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:397 页码:276-282 页数:7 大小:1909K

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频