文献知网节
  • 记笔记

空间众包中基于位置预测的任务分配

张晨郭玉超林培光任威隆张森聂秀山任可

山东财经大学计算机科学与技术学院山东省金融信息工程技术研究中心山东大学计算机学院香港科技大学计算机与工程学院

摘要:随着移动设备的普及和O2O(Online-To-Offline)商业模式的快速发展,越来越多的空间众包平台融入人们的日常生活中,例如滴滴出行、饿了么等等.空间众包中的一个核心问题是任务分配,主要研究如何将空间任务分配给合适的众包工人.任务分配方式主要分为服务器分配模式(Server Assigned Task,SAT)和用户选择模式(Worker Selected Task,WST)两种模式,目前多数统一规范化的众包服务采用SAT模式,即系统主动将任务分配给任务请求位置附近的众包工人.在此任务分配模式下,众包工人和任务之间的旅行成本变得至关重要,较少的旅行成本意味着较少的响应时间和较高的任务接受率.因此提出了基于位置预测的任务分配方式,该方式不仅考虑任务和众包工人的当前位置,还考虑未来任务可能出现的位置,从而降低旅行成本和相应时间.首先设计了贪婪方法(Greedy Approach),然后在贪婪方法的基础上通过贝叶斯、支持向量机、决策树等方法预测未来任务的分布来辅助分配任务,最后在真实数据上进行的实验表明,该方法减小了在长时间内的总旅行成本,具有较好的性能.
  • DOI:

    10.13232/j.cnki.jnju.2018.02.019

  • 专辑:

  • 专题:

  • 分类号:

    F272

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:219 页码:471-480 页数:10 大小:781K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频