文献知网节

时空数据发布中的隐式隐私保护

王璐孟小峰郭胜娜

中国人民大学信息学院

摘要:随着大数据时代的到来,大量的用户位置信息被隐式地收集.虽然这些隐式收集到的时空数据在疾病传播、路线推荐等科学、社会领域中发挥了重要的作用,但它们与用户主动发布的时空数据相互参照引起了大数据时代时空数据发布中新的个人隐私泄露问题.现有的位置隐私保护机制由于没有考虑隐式收集的时空数据与用户主动发布的位置数据可以相互参照的事实,不能有效保护用户的隐私.首次定义并研究了隐式收集的时空数据中的隐私保护问题,提出了基于发现-消除的隐私保护框架.特别地,提出了基于前缀过滤的嵌套循环算法用于发现隐式收集的时空数据中可能泄露用户隐私的记录,并提出基于频繁移动对象的假数据添加方法消除这些记录.此外,还分别提出了更高效的反先验算法和基于图的假数据添加算法.最后,在若干真实数据集上对提出的算法进行了充分实验,证实了这些算法有较高的保护效果和性能.
  • DOI:

    10.13328/j.cnki.jos.005093

  • 专辑:

  • 专题:

  • 分类号:

    TP311.13;TP309

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

温馨提示:阅读CAJ格式原文,请使用CAJ浏览器

下载:492 页码:1922-1933 页数:12 大小:558K

引文网络
  • 参考文献
  • 引证文献
  • 共引文献
  • 同被引文献
  • 二级参考文献
  • 二级引证文献
  • 批量下载
相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 相关法规
  • 关联作者
  • 相关视频