文献知网节
  • 记笔记
摘要:工业过程数据具有高斯和非高斯混合分布的特点。独立因子分析(IFA)采用一维高斯混合模型拟合任意的因子分布,因此可以处理高斯和非高斯混合的问题。虽然在给定因子数的前提下变分IFA算法可以有效地缩短建模时间,但是独立因子数的选择仍然需要较长的计算时间。此外,若IFA的因子数选择不当,会造成部分因子的信息遗留在观察变量的残差中,导致GSPE监控指标的监控性能变差。为了解决IFA在实际应用中存在的问题,本文结合了IFA和FA方法。首先使用FA辅助IFA选取独立因子数,以进一步减小IFA建模时间;其次使用FA对IFA的残差进行再处理,以解决由于独立因子数选择不当造成的问题。最后将该方法应用于田纳西-伊斯曼(TE)过程和乙烯裂解炉过程的监控中,实验结果验证了该联合方法的有效性。
  • DOI:

    10.14135/j.cnki.1006-3080.2017.05.013

  • 专辑:

  • 专题:

  • 分类号:

    TP277;TQ06

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:30 页码:684-691 页数:8 大小:1468K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频