文献知网节
  • 记笔记
摘要:工业过程具有高复杂性、动态性等特点。在特征提取时,引入时滞因子扩展时序矩阵可以解决现场变量带有的自相关与互相关特性问题。特征提取算法处理三阶张量形式的扩展数据时需要将三阶张量在某一方向向量化,这将破坏原始数据内在二维结构信息。对此,本文提出了基于张量空间的时序扩展局部结构保持算法(Tensor-Temporal Extension Locality Preserving Projection,T-TELPP)。首先,改进局部保持投影(LPP)算法得到时序扩展的LPP算法(TELPP),使其充分提取欧氏空间近邻与时序近邻信息;然后,将TELPP扩展到张量空间得到T-TELPP算法。T-TELPP直接将动态扩展数据投影到特征空间与残差空间,并分别建立T2和SPE统计量。对田纳西-伊斯曼(Tennessee Eastman,TE)过程进行监测,通过与PCA、DPCA和DLPP算法对比,验证了T-TELPP算法在动态过程监测上的有效性与优越性。
  • DOI:

    10.14135/j.cnki.1006-3080.20171213004

  • 专辑:

  • 专题:

  • 分类号:

    TQ050.7

  • 手机阅读
    即刻使用手机阅读
    第一步

    扫描二维码下载

    "移动知网-全球学术快报"客户端

    第二步

    打开“全球学术快报”

    点击首页左上角的扫描图标

    第三步

    扫描二维码

    手机同步阅读本篇文献

  • HTML阅读
  • CAJ下载
  • PDF下载

下载手机APP用APP扫此码同步阅读该篇文章

下载:103 页码:496-503 页数:8 大小:1582K

相关推荐
  • 相似文献
  • 读者推荐
  • 相关基金文献
  • 关联作者
  • 相关视频